Skip to main content
Open In ColabOpen on GitHub

RunPod LLM

Get started with RunPod LLMs.

Overview

This guide covers how to use the LangChain RunPod LLM class to interact with text generation models hosted on RunPod Serverless.

Setup

  1. Install the package:
    pip install -qU langchain-runpod
  2. Deploy an LLM Endpoint: Follow the setup steps in the RunPod Provider Guide to deploy a compatible text generation endpoint on RunPod Serverless and get its Endpoint ID.
  3. Set Environment Variables: Make sure RUNPOD_API_KEY and RUNPOD_ENDPOINT_ID are set.
import getpass
import os

# Make sure environment variables are set (or pass them directly to RunPod)
if "RUNPOD_API_KEY" not in os.environ:
os.environ["RUNPOD_API_KEY"] = getpass.getpass("Enter your RunPod API Key: ")
if "RUNPOD_ENDPOINT_ID" not in os.environ:
os.environ["RUNPOD_ENDPOINT_ID"] = input("Enter your RunPod Endpoint ID: ")

Instantiation

Initialize the RunPod class. You can pass model-specific parameters via model_kwargs and configure polling behavior.

from langchain_runpod import RunPod

llm = RunPod(
# runpod_endpoint_id can be passed here if not set in env
model_kwargs={
"max_new_tokens": 256,
"temperature": 0.6,
"top_k": 50,
# Add other parameters supported by your endpoint handler
},
# Optional: Adjust polling
# poll_interval=0.3,
# max_polling_attempts=100
)

Invocation

Use the standard LangChain .invoke() and .ainvoke() methods to call the model. Streaming is also supported via .stream() and .astream() (simulated by polling the RunPod /stream endpoint).

prompt = "Write a tagline for an ice cream shop on the moon."

# Invoke (Sync)
try:
response = llm.invoke(prompt)
print("--- Sync Invoke Response ---")
print(response)
except Exception as e:
print(
f"Error invoking LLM: {e}. Ensure endpoint ID/API key are correct and endpoint is active/compatible."
)
# Stream (Sync, simulated via polling /stream)
print("\n--- Sync Stream Response ---")
try:
for chunk in llm.stream(prompt):
print(chunk, end="", flush=True)
print() # Newline
except Exception as e:
print(
f"\nError streaming LLM: {e}. Ensure endpoint handler supports streaming output format."
)

Async Usage

# AInvoke (Async)
try:
async_response = await llm.ainvoke(prompt)
print("--- Async Invoke Response ---")
print(async_response)
except Exception as e:
print(f"Error invoking LLM asynchronously: {e}.")
# AStream (Async)
print("\n--- Async Stream Response ---")
try:
async for chunk in llm.astream(prompt):
print(chunk, end="", flush=True)
print() # Newline
except Exception as e:
print(
f"\nError streaming LLM asynchronously: {e}. Ensure endpoint handler supports streaming output format."
)

Chaining

The LLM integrates seamlessly with LangChain Expression Language (LCEL) chains.

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate

# Assumes 'llm' variable is instantiated from the 'Instantiation' cell
prompt_template = PromptTemplate.from_template("Tell me a joke about {topic}")
parser = StrOutputParser()

chain = prompt_template | llm | parser

try:
chain_response = chain.invoke({"topic": "bears"})
print("--- Chain Response ---")
print(chain_response)
except Exception as e:
print(f"Error running chain: {e}")

# Async chain
try:
async_chain_response = await chain.ainvoke({"topic": "robots"})
print("--- Async Chain Response ---")
print(async_chain_response)
except Exception as e:
print(f"Error running async chain: {e}")

Endpoint Considerations

  • Input: The endpoint handler should expect the prompt string within {"input": {"prompt": "...", ...}}.
  • Output: The handler should return the generated text within the "output" key of the final status response (e.g., {"output": "Generated text..."} or {"output": {"text": "..."}}).
  • Streaming: For simulated streaming via the /stream endpoint, the handler must populate the "stream" key in the status response with a list of chunk dictionaries, like [{"output": "token1"}, {"output": "token2"}].

API reference

For detailed documentation of the RunPod LLM class, parameters, and methods, refer to the source code or the generated API reference (if available).

Link to source code: https://github.com/runpod/langchain-runpod/blob/main/langchain_runpod/llms.py


Was this page helpful?