ChatPipeshift
This will help you getting started with Pipeshift chat models. For detailed documentation of all ChatPipeshift features and configurations head to the API reference.
Overviewโ
Integration detailsโ
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatPipeshift | langchain-pipeshift | โ | - | โ |
Model featuresโ
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
โ | โ | โ | โ | โ | โ | โ | โ | โ | - |
Setupโ
To access Pipeshift models you'll need to create an account on Pipeshift, get an API key, and install the langchain-pipeshift
integration package.
Credentialsโ
Head to Pipeshift to sign up to Pipeshift and generate an API key. Once you've done this set the PIPESHIFT_API_KEY environment variable:
import getpass
import os
if not os.getenv("PIPESHIFT_API_KEY"):
os.environ["PIPESHIFT_API_KEY"] = getpass.getpass("Enter your Pipeshift API key: ")
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
Installationโ
The LangChain Pipeshift integration lives in the langchain-pipeshift
package:
%pip install -qU langchain-pipeshift
Note: you may need to restart the kernel to use updated packages.
Instantiationโ
Now we can instantiate our model object and generate chat completions:
from langchain_pipeshift import ChatPipeshift
llm = ChatPipeshift(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
temperature=0,
max_tokens=512,
# other params...
)
Invocationโ
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content='Here is the translation:\n\nJe suis amoureux du programme. \n\nHowever, a more common translation would be:\n\nJ\'aime programmer.\n\nNote that "Je suis amoureux" typically implies romantic love, whereas "J\'aime" is a more casual way to express affection or enjoyment for an activity, in this case, programming.', additional_kwargs={}, response_metadata={}, id='run-5cad8e5c-d089-44a8-8dcd-22736cde7d7b-0')
print(ai_msg.content)
Here is the translation:
Je suis amoureux du programme.
However, a more common translation would be:
J'aime programmer.
Note that "Je suis amoureux" typically implies romantic love, whereas "J'aime" is a more casual way to express affection or enjoyment for an activity, in this case, programming.
Chainingโ
We can chain our model with a prompt template like so:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
AIMessage(content="Das ist schรถn! Du liebst Programmieren! (That's great! You love programming!)\n\nWould you like to know the German translation of a specific programming-related term or phrase, or would you like me to help you with something else?", additional_kwargs={}, response_metadata={}, id='run-8a4b7d56-23d9-43a7-8fb2-e05f556d94bd-0')
API referenceโ
For detailed documentation of all ChatPipeshift features and configurations head to the API reference: https://dashboard.pipeshift.com/docs
Relatedโ
- Chat model conceptual guide
- Chat model how-to guides