ChatDeepSeek
This will help you getting started with DeepSeek's hosted chat models. For detailed documentation of all ChatDeepSeek features and configurations head to the API reference.
Overviewโ
Integration detailsโ
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatDeepSeek | langchain-deepseek-official | โ | beta | โ |
Model featuresโ
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
โ | โ | โ | โ | โ | โ | โ | โ | โ | โ |
Setupโ
To access DeepSeek models you'll need to create a/an DeepSeek account, get an API key, and install the langchain-deepseek-official
integration package.
Credentialsโ
Head to DeepSeek's API Key page to sign up to DeepSeek and generate an API key. Once you've done this set the DEEPSEEK_API_KEY
environment variable:
import getpass
import os
if not os.getenv("DEEPSEEK_API_KEY"):
os.environ["DEEPSEEK_API_KEY"] = getpass.getpass("Enter your DeepSeek API key: ")
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
Installationโ
The LangChain DeepSeek integration lives in the langchain-deepseek-official
package:
%pip install -qU langchain-deepseek-official
Instantiationโ
Now we can instantiate our model object and generate chat completions:
from langchain_deepseek import ChatDeepSeek
llm = ChatDeepSeek(
model="deepseek-chat",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# other params...
)
Invocationโ
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg.content
Chainingโ
We can chain our model with a prompt template like so:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API referenceโ
For detailed documentation of all ChatDeepSeek features and configurations head to the API Reference.
Relatedโ
- Chat model conceptual guide
- Chat model how-to guides